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Estimation of the Parameters of the

Logistic Distribution* MAR 7

by

00 Shanti S. Gupta and Mrudulla N. Waknis

Purdue University

1. Introduction

This paper investigates the estimation if the parameters (both loca-

tion arid scale) of the logistic distribution using saTple quc-ntiles and

order statistics. Three kinds of estimators have been considered; (1) Best

linear unbiased estimators based on sample quantiles; (2) Unbiased linear

asymptotically best estimators of Blom; (3) Asymptotically best, asymptotically

unbiased linear estimators of Jung. All these methods of estimation are asymp-

toticaIly efficient and one of the purposes of this investigation is to deter-

mine hou good they are when compared to the best linear unbiased estimators

in terms of their relative efficiency.

Let (xl, x2 ,..., xn) be a sample from a logistic distribution with

p.d.f. of x given by

(1.1) - I<+

•- a <

Ob 0
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where

The c.d.f. F(x) is then defined by

,.

(1.2) F(x)
1 + e

Section 2 contains a discussion of the estimators based on sample quan-

tiles. When a is knowm the optimum symmetric spacing of the qucntiles

used in the estimation of * has been obtcined, fc..r aiy n'jmbcr k of

quantiles. When A is kno,%, the optimum spacing of t*• quc-n{iies for

estimating c has been derived for k = 3, 4.

Section 3 contains a brief discussion of the approximations to the best

linear unbiased estimators suggested by Blom (1957) and Jung (1956), and com-

pares these two sets of estimators in terms of their relative efficiency w:iti

respect to the best linear unbiased estimators.

2. Quantile Estimators

The quantile estimators are based on a fixed number of sample quantiles

when the total sample size is very large. Such a method of estimation would

thus be useful when the experimenter has a very large sample, but would like

to estimate the parameters with a few selected observations which he has the

S freedom to choose. Such a situation could arise in life-testing experiments

when the observations do arise in a certain order and it is possible for the

experimenter to select a few quantiles, the choice of the number of quantiles

and the spacings bet!!een the quantiles being left to the experimenter. Ex-

pression for the quantile estimators of the parameters are discussed in this

section. The scale parameter is assumed to be known, the optimum spacing
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of the quantiles for estimating the locatic L parameter p has been obtained

for any number of quantiles. If the locat" on parameter p is assumed to be

known, the optimum spacing of the quantilen fo£ estimating c has been deter-

mined for the number of quantiles a 3,4.

Let X,.l) < ... < be the k order statistics in a sample

of size n from the logistic distribution (1.1). The following expressions

will be needed and are defined as follows

ni
(2.1) i, m -- IJ, Xo , k 1, i = 1, 2, ... ,:

ui

(2.2) f f(t)dt, u, - ioge(X./(l-Xj)), i - 1, 2, ... , k

(2.3) r a f(u) " i( i) fo - fk+ - 0, 1 , 1, 2, ... , k

k+1

(2.4) x = (1-Xl-Xi. 1 )(xi(l-x1)x(ni)-)

k+1

k+1

(2.6) K, in Z(.L'-i'Og(i(-.
i±ul

k+1 2-.Xo)log(-'i)

' ~(2.7) K7.• (i•~l(~iX~)

i2-4. Wl i - ImI
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k+1

(2.8) K3 = Z (
i =1

- i.j 1(l-Xi. 1)lO~e(Xi 1l/(l-*X. 1 )))•

Three different cases will be discussed.

(A) Estimation of u, (c knmon)

From the general expressions for the estimators derived by Ogawa

(1951), the best linear unbiased estimator jk* of 4 and its variance are

given by

(2.9)

2
2 1(2.10) v(lk*) 7 .-

(2.9) and (2.10) give the estimator of jk* and its variance for a fixed

number k of quantiles and for fixed values of Xi" For a fixed number of

quantiles, the followring theorem gives the values of I's which will minim-

ize v(l*).

Theorem 1. For a fixed number k of sample quantiles, the spacing of the

quantiles for which V(i.*) is minimal, is symmetric and is given by

3 i=/(k÷•)

"Since minimizing V(L*) would be equivalent to maximizing KI, then

by maximizing K1 w.r.t. Xi's (i - i, 2, ... , k), the optimum Xi's will

be obtained as the solutions cf the system of equations

( •(2.11) xi+1 - Xi -i .i_ i = i 1 , 2 .. k
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The above se, of equations is satisfied for Xi = i/(k+!).To prove that

this set of I's does maximize K,, consider the matrix D a (a2K-/aioX )

evaluated at Xi . i/(k+l).Let Ak-p be the determinant of the matrix ob-

tained from D by deleting the last p rows and p columns. Then

'let " 2(Ac-_) - %- 2 " ('i)•'(CI) "

It follows that the matrix D is negative definite. Hence K1 is

maximized when = i/(k+l). Now for Xi = i/(k+l) and for i = 1 , 2, ... ,

it follows

(2.12) al + Nk-i+l ' 1

Ui + Uk-i+l = 0

(-)
fi = fk-i+l

Clearly, (2.12) implies that the spacing is symmetric and 5 = 0.

Thus the best linear unbiased estimator with optimum spacings is given by

k
(2.13) = k(k+l)(k+21 X i(k+lni)x

302 (l 2•(2.lI#) v(i&*) - 3o (k+l)2
(a 

nk(k+2)

The Cramer-Rao lower bound for the variance of an unbiased estimator for

and c is known is giver by 3a 2 /(a2u).Hence the relative efficiency is

given by
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C.R. loier bound k(k+2)
((.1) (k+l)2

The above relati e efficiency increases with k, its minimum (for k - 0)

being 0.75.

Estimation of u for censored samples

In practice there often arise situations when some of the observations

are missing. Suppose that the (rl-l) smallest u±nd the (r 2 -1) largest

observations are not available. Then imposing the following restriction on k

(2.16) k < min n- 2 r 11

2 1n

the best linear unbiased estirmtor for p can be obtained from (2.13).

(B) Estimation of a when g is known

In this case it has been proved by Ogawa that the best linear

unbiased estimator for a, for a fixed number k of saxple quantiles is

(2.17) o- Y/K - $ /2

(2.18) V(a*) = a21(nK)

"2 and K3 being defined by (2.7), (2.8).

As in the previous case, the problem of deriving the optimum spacing of

the sample quantiles arises. The cpti.zi -zpacing for a* is obtained by

maximizing K2. Now
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8•- 0 , for i 1 1, 2, ... , k

ylelds

(2.19) E qi Qi+l j F{(l_2%i)loge 'i + 4
i i-i1 i+le i

Qi Qi+l 0,] , , k

1 i-i )-.+i O,,i

where

2 .i-i
(2.2o X i(:Y-X•Clge ( iN-" " " "-- "06

For a subclass of the class of all distribution function, Tischendorf

(1955) has derived necessary conditions for the spacings that makes K2

maximum. It can be verif-ed that the logistic distribution belongs to this

subclass. This necessary condition for logistic distribution is

(2.21) (1-2X-}+ :o, , 2, .. , k.(•2) (12•)loge -:ij -x- •i Xi~ i+lxi

From (2.20) and (2.21) it is clear that the optimwn spacing can be ob-

tained by solving (2.21). fla-7ever, it is not possible to solve (2.21) explic-

itly for Xi. Besides the system of equations (2.21) may also possess multiple

roots wihich further entails a choice of the proper Xi's. A slight simplifi-

cation of the ;roblem is effected by considering only ry-mietric spacings.

For k x 2, and using symmetric quantiles,
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(2.22) N=... ,q. . .

For this case, equation (2.21) becomes

1 - 3x1 + 4X21 X1

(2.23) 1 1 1 ) + 2 0 .

By solving (2.23), it was round that .103 is a solution of (2.23) and

it was verified that K2 does have an absolute maximum at ,= .103

The estimator 0* and its variance are given by

(2.24) 0* = . 4 192((:r(E.8 9 7n]+l)-X([.103n]++l))

2
(2.24) V(&'*) = 1. 0227 2--n

It can be shom that the Crarner-Rao lower bound for the variance of an

unbiased estimator 8 oZ C is

(2.26) v(6) t -.-
n(34 )

[The details are lengthy and have been omitted.] Hence the relative efficiency

"of 0* as compared with the Cramer-Rao bound is 68.380/0 .

For k = 3, the assumption that the spacing of the quantiles is symetric

gives X2 to be equal to .5, and the coefficient of x(D2n3+l) in the

estimator of C is zero. In general for k = 2m + 1, the conditicn of

symmetric spacing reduces thp coefficient of x(•n~l) in the esti-

mator of c to zero. Thus for k = 3, K2 is the sa-me function of X, as



given in (2.22) so that the estim tor a* and its variance is again given

by (2.24) and (2.25), respectivell.

(C) Estimation of both and a

In the case whe,,e both k and a are unknoit, the estimators are

given by

(2.27) * - y)

(2.28) a,* =
(2.28) =A (-K3X + KlY)

where

A = K1 2 -4

2K2ý 2 K,
(2.29) Var(V,*) =9 -- , V(C*) 7n n b

Coy (k*, 2') K3
n A

The problem of obtaining the optimum spacing in this case even under the

simplifying assumption of symmetry of the spacings is complicated since mini-

mizing the generalized variance leads to simultaneous equations which cannot

be solved explicitly.

3. Blom's and Jung's Estimators

This section discusses Blom's and Jung's estimators for estimating

lk and a by linear functions of order statistics. Blom (1957) approximated

the best linear unbiased estimators by estimators that are unbiased but do not
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necessarily have the minimum variance of all linear unbiased estimators.

Jung (1955) approxizxited the best linear unbiased estimators by estimators

that are "asymptotically unbiased and asymptotically best".

Since this investigation was carried out, the best linear unbiased

estimators of the location and scale par.meters using order statistics have

been computed for sample size < 25, and are given in Gupta, Qureishi and

Shah (1965). However the estimators of Blom and Jung are relatively simple

to compute and hence it is of interest to determine how good these asymptot-

ically 'good' estimators are when compared to the best linear unbiased esti-

mators In terms of their relative efficiency for moderate sample sizes.

This investigation would thus be useful for estimating the parameters for

sample sizes : 25, and also as providing some indication of the general

properties of these two kinds of estimators, and hence has been included.

The authors computed both these estimators for both p and a. Since

the estimators of Jung are biased they were modified by multiplying them by

an appropriate constant. The folloing were the main results.

(i) The modified estimator of Jung for estimating i reduces

to Blom's estimator h' where

n
6i(n+l-ian(n+l)(n+2')' " M~

The approximate variance of •' is given by

o a (n+l)-a 'n(n+2)2
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(ft) Jung's estimation of c modified to make it unbiased did not

reduce to Blomi's estimator and its exact variance for n < 25

was found to be unifornly lower than the exact variance of the

corresponding estimator of Blom. Jung's estimator for a, a

is given by

n

£ 9-T .- (n+1)2+ 2v(n+l) + 2v(n+l-v)loge(v/n+l-v)] x(,)
n(n+l) (3+rr V3 V=1

Blom's estimator of a, a' is

n

a, = Gix(i)
i=l

where

ai(n+l-i)(ci-C 1 1 )%i i ic n1

d(n+l) 2

Si(n+l-i) (+) P(in) ( (n-i) i(i+in) i < nS(n+1) 2 (n+l) 2 _

n-i
•l~~n)= -• =- l(n-i+l,n), n -i 1 1

J=i

n

i=o

Table I gives the coefficients of the order statistics in Blom's

estimator of p. The last column gives the exact variance of the estimator.

These exact variances w;ere calculated by using the variances and covariances

SI • I i " I , -,,, .. . .,.. ..,.-.... .I•
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or the order stati4Aics given in Shah (1965) and Gupta, Shah and Qureishi

f1965),_ •.e relative effliiency of this estimator wrhen compared with the

best linear unbiased estimator i3 given in Table III for selected values of n.

Table II gives the coefficients of the order statistics in the modified

Jung's estimator of a, since this estimator has smaller variance than Blom's

estimator. Again the last column gives the exact variances of these estimators.

Although Blom's estimator of a did have higher variance than the corres-

ponding estimator of Jung (modified), yet it does have fairly high relative

efficiency when compared writh the best linear unbiased estimator, and wac

found to be at least 96 percent for n < 25. Table III gives the relative

efficiency of Blom's estimator of a, and the relative efficiency of Jung's

estimator (=cif- icd ) of a for sclected valucs of n.

From this table it is obvious that Blom's and Jung's estimators, besides

being simple to compute, have very high relative efficiency even for moderate

values of n, so that for n P 25, one could expect these estimators to be

almost as efficient as the best linear unbiased estimators of Lloyd.



•3

Table I

Coefficients of the ith order statistic in the unbiased nearly best estimator cf 1k.
tie mean of the logistic distribution, using Blora's method.

Coefficient of X(n.i+l) = coefficient of x(i).

1 2 3 4 5 6 7 8 9 10 11 12 13 V

5 .1429 .2286 .2571 .1927

6 .1071 .1786 .2143 .1594

7 .0833 .1429 .1786 .1905 .1358

8 .0667 .1167 .1500 .1667 .1182

9 .o545 .0970 .1273 .1455 .1515 .1047

i0 .0o455 .0818 .1091 .1273 .1'A64 .09039

1i .0385 .0699 .0944 .1119 .1224 .1259 .0852

12 .0330 .c604 .0824 .0989 .1099 .1154 .0779

13 .0286 .0527 .0725 .0879 .0989 .1055 .1077 .0717

14 .0250 .0464 .o643 .0786 .0893 .0964 .1OO0 .0665

15 .0221. o412 .0574 .0706 .0809 .0882 .0926 .o941 .0620

16 .0196 .0368 .0515 .0637 .0735 .0809 .0858 .0882 .0580

17 .0175 .0330 .o464 .0578 .o671 .0743 .0795 .C826 .0836 .0546

18 .0158 .0298 .0421 .0526 .0614 .0684 .0737 .0772 .0789 .0515

19 •o143 .0271 .0383 .o481 .0564 .0632 .o684 .0722 .0744 .0752 .o487

20 .0130 .0247 .0351 .0442 .0519 .0584 .c636 .0675 .0701 .0714 .0463

21 .0119 .0226 .0322 .0407 .W0o0 .0542 .0593 .0632 .0661 .c678 .0683 .04140

22.0109 .0o208 .0296 .0375 •o445 .0504 .0553 .0593 .0623 .0642 .0652 .0420

23 .0100 .0191 .0274 .0348 .0413 .0470 .0517 .0557 .0587 o0609 .0622 .0626 .0401

24 .0092 .0177 .0254 .0323 .0385 .o438 .o435 .0523 .0554 .0577 .0592 .c6oo .0385

25 .0085 .0164 .0236 .0301 .0359 lO .0 455 .o492 .0523 .0547 .0564 .0574 .0573 .0369



Table II

Coefficients of the (n-i+l)th order statistic X(n-i+l' in the

linear estimator of c (by Jung's method) modified to make it unbiased.

_ Variance.
1 2 3 4 5 6 7 8 9 10 11 12 13- -

5 .3538 .2038 0 .1706

6 .2907 .2024 .0715 .1372

7 .2459 .1907 .1024 0 .a147

8 .2125 .1767 u.147 .0396 .0985

9 .•1867 .1630..1180 o616 o .0864

10 .1663 .1503 .1170 .0737 .0251 .0769

U .1497 .1389 .38 .08oo .o412 o .0693

12 .1360 .1288 .1095 .0828 .0514 .0174 .0630

13 .1244 .1198 .1049 .0834 .0577 .0295 0 .0578

14 .1147 .1119 .1001 .0827 .0615 .0379 .0128 .0534

15 .1o62 .1048 .0955 .0813 .0636 .0436 .0222 0 .0496

16 .)989 .o934 .0911 .0793 .0645 .o475 .0291 .0098 .0463

17 .0925 .0927 .0869 .0771 .o646 .0500 .0341 .0173 0 .0434

18 .0869 .0876 .0829 .0748 .0o6b1 .0516 .0377 .0230 .0077 .04o9

19 .o818 .0829 .0793 .0724 .0633 .0524 .0404 .0274 .o138 o .0386

20 .0774 .0787 .0753 .0700 .0622 .0528 .0422 .0307 .0187 .oo63 .0366

21 .0733 .0749 .0726 .0677 .0609 .0527 .c434 .0332 .C225 .0113 0 .0348

22 .0697 .0714 .0696 .0655 .0596 .0524 .0441 .0351 .0255 .0154 .0052 .0332

23 .0663 .0682 .0668 .0633 .0582 .0518 •c445 .0365 o0278 .0188 .0095 0 .0317

24 .0633 .0652 .0642 .0612 .0568 .0511 .o446 .0374 .0296 .0215 .0130 .0043 .0303

".3 .0605 .0625 .0618 .0592 .0553 .05o4 .A445 .0381 .0310 .0236 .0159 .0080 0 .2903

-Computed by using the same approximate covariance matrix a. used in Blom's method.
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Table III

Table giving the relative efficiency of Blom's estimator of p and Jung's

estimator (modified) of a; relative efficiency is with rerpect to the best

linear unbiased estimators.

5 7 10 15 20 25
Rel. Eff...

Blom's Estimator

of Ik .991 .993 .996 .997 .998 .999

Jung's Estimator

(modified) of a .998 .998 .999 1.000 1.000 1.000

(.. II

& • I - . .. lin l u n n - H
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